package com.thealgorithms.searches;
import com.thealgorithms.devutils.searches.SearchAlgorithm;
import java.util.Random;
import java.util.concurrent.ThreadLocalRandom;
import java.util.stream.IntStream;
/**
* The UpperBound method is used to return an index pointing to the first
* element in the range [first, last) which has a value greater than val, or the
* last index if no such element exists i.e. the index of the next smallest
* number just greater than that number. If there are multiple values that are
* equal to val it returns the index of the first such value.
*
* <p>
* This is an extension of BinarySearch.
*
* <p>
* Worst-case performance O(log n) Best-case performance O(1) Average
* performance O(log n) Worst-case space complexity O(1)
*
* @author Pratik Padalia (https://github.com/15pratik)
* @see SearchAlgorithm
* @see BinarySearch
*/
class UpperBound implements SearchAlgorithm {
// Driver Program
public static void main(String[] args) {
// Just generate data
Random r = ThreadLocalRandom.current();
int size = 100;
int maxElement = 100000;
Integer[] integers = IntStream
.generate(() -> r.nextInt(maxElement))
.limit(size)
.sorted()
.boxed()
.toArray(Integer[]::new);
// The element for which the upper bound is to be found
int val = integers[r.nextInt(size - 1)] + 1;
UpperBound search = new UpperBound();
int atIndex = search.find(integers, val);
System.out.printf(
"Val: %d. Upper Bound Found %d at index %d. An array length %d%n",
val,
integers[atIndex],
atIndex,
size
);
boolean toCheck = integers[atIndex] > val || integers[size - 1] < val;
System.out.printf("Upper Bound found at an index: %d. Is greater or max element: %b%n", atIndex, toCheck);
}
/**
* @param array is an array where the UpperBound value is to be found
* @param key is an element for which the UpperBound is to be found
* @param <T> is any comparable type
* @return index of the UpperBound element
*/
@Override
public <T extends Comparable<T>> int find(T[] array, T key) {
return search(array, key, 0, array.length - 1);
}
/**
* This method implements the Generic Binary Search
*
* @param array The array to make the binary search
* @param key The number you are looking for
* @param left The lower bound
* @param right The upper bound
* @return the location of the key
*/
private <T extends Comparable<T>> int search(
T[] array,
T key,
int left,
int right
) {
if (right <= left) {
return left;
}
// find median
int median = (left + right) >>> 1;
int comp = key.compareTo(array[median]);
if (comp < 0) {
// key is smaller, median position can be a possible solution
return search(array, key, left, median);
} else {
// key we are looking is greater, so we must look on the right of median position
return search(array, key, median + 1, right);
}
}
}